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Abstract— In this paper we introduce an anti surge controller
for a close-coupled valve (CCV) in a compression system. The
controller is based upon feedback linearization in combination
with linear state feedback. The mentioned CCV modifies the
characteristics of the compressor, allowing it to be stably
operated beyond the original surge line. It is shown that the
original model consisting of the compressor in combination
with the CCV can be transformed into the Byrnes-Isidori-
Normalform, a necessity in order to enable feedback lineariza-
tion. Furthermore, robustness of the controller is illustrated
by circle criterion analysis with a sector nonlinearity feedback.
Simulation examples illustrate the theoretical robustness inves-
tigation also for the case when the control signal is bounded
and noise is added to the state derivatives and to the output.

I. INTRODUCTION

In this paper we propose a nonlinear controller for the
control of a model of an axial compressor introduced by
[6]. If a compression system is operated below a certain
mass flow limit (denoted surge line), it will go into a
marginally stable, potentially unstable mode of operation.
This mode results in undesired limit-cycle oscillations in flow
and pressure, so called surge, which can lead to physical
damage of the compression system or at least to reduction
in performance.

Therefore, controlling the occurence of surge is vital to
avoid damages and keep the performance up. One alternative
of active surge control is the use of a so called close-coupled
valve (CCV), as introduced by [11]. The CCV acts on the
compressor’s characteristics directly and thereby stabilizes
the system. The overall dynamics of the compressor in
combination with the CCV can be considered as those of
an extended compressor, see Figure 1.

There exist many works concerning the control of surge
in compression systems, such as control by state feedback as
well as output feedback control. [4] implemented a control
structure based upon a CCV controlled by backstepping
methods. In [9] an output feedback design for a Moore-
Greitzer compressor model was introduced, whereas in [10]
a robust output feedback controller for active surge control
of compression systems was presented. The authors of [12]
developed a control system based upon piston actuation to
actively control surge. In [13] a back-up for failure of the
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active surge control is introduced. Broad reviews of surge
and rotating stall controllers can be found in [3] and [5].

The aforementioned article [4] introduces surge control
using feedback from mass flow. Due to the fact that mass
flow is both difficult and expensive to measure, mass flow
observers have been studied, e.g. in [2], [9] and [10] for
more general compression systems. An observer for the
Greitzer compressor model considered in this work has been
presented in [1] providing a full state observer with local
stability results based on a circle criterion design superior to
for example an Extended Kalman Filter design, especially in
the surge case.

Not only Jacobian-based linearization around a given
setpoint can deliver satisfactory results when designing a
controller for a nonlinear system. Also feedback lineariza-
tion can be applicable in some cases. The advantage over
Jacobian-based linearization is that the linearized system
not only holds for a specific setpoint, but at least for a
whole family of setpoints or even the whole feasible state-
space. Especially when the dynamics of the system are
well modeled and understood, feedback linearization can be
applied, but also if the model diverges from the real process.

We will demonstrate that the feedback linearization
methodology can successfully be used to stabilize surge in
a compression system. This will be done by theoretical ro-
bustness analysis incorporating a circle criterion investigation
with a sector nonlinearity feedback as well as illustrated by
simulation examples.

The paper is structured as follows: In Section II the math-
ematical model of the compression system is introduced,
whereas Section III provides the controller design with
robustness analysis. Section IV presents some illustrative
simulation examples while the paper is closed with the
conclusion in Section V.

 �

Compressor Plenum

ThrottleCCV

Fig. 1. Schematic representation of a compressor with CCV, ψ indicates
non-dimensional pressure and φ denotes non-dimensional flow

II. MATHEMATICAL MODEL

The dynamics of the two-state Greitzer compressor model
in combination with a close-coupled valve (CCV) for the



control of compressor surge can be considered as those
of an extended compressor with the CCV pressure drop
acting as part of an equivalent compressor. The following
dimensionless equations hold for the compressor (plant) with
the origin as equilibrium point

˙̂
ψ =

1

B

(
φ̂− Φ̂

(
ψ̂
))

˙̂
φ = B

(
Ψ̂c

(
φ̂
)
− ψ̂ − u

)
,

(1)

where u is the pressure drop across the CCV,

Φ̂
(
ψ̂
)

= γ

(
sgn(ψ̂ + ψ0)

√∣∣∣ψ̂ + ψ0

∣∣∣−√ψ0

)
indicates the throttle characteristics and

Ψ̂c

(
φ̂
)

= −k3φ̂3 − k2φ̂2 − k1φ̂,

denotes the compressor characteristics.
Be advised that ·̂ does not label an estimated value, but

the deviation from operating points ψ̂ = ψ − ψ0 and φ̂ =
φ−φ0, respectively. φ designates the non-dimensional mass
flow

(
φ = ṁ

ρ UAc

)
, whereas ψ indicates the non-dimensional

pressure
(
ψ = p

0.5 ρ U2

)
and γ denotes the throttle gain.

Note furthermore that sgn (0) = 0, that time has been
normalized by the Helmholtz frequency, thus τ = t ωH , and
that the pressure drop across the CCV typically only can
provide positive pressure differences, meaning that u ≥ 0.
This is based on the fact that the CCV should be fully opened
in the equilibrium point. However, it can be operated as an
initially throttled valve, which will lower the performance of
the overall compression system.

For the parameters it holds that B = U
2as

√
Vp

AcLc
> 0,

where U is the compressor blade tip speed, as is the speed of
sound, Vp is the plenum volume, Ac is the flow area and Lc
is the length of ducts and compressor, k1 = 3Hφ0

2W 2

(
φ0

W − 2
)

,

k2 = 3H
2W 2

(
φ0

W − 1
)

and k3 = H
2W 3 , where H > 0, W > 0

and φ0 > 0. The operating point ψ0 can be calculated via

ψ0(φ0) = ψ0c + H

[
1 + 3

2

(
φ0

W − 1
)
− 1

2

(
φ0

W − 1
)3]

with

ψ0c = 0.3 and the throttle gain γ via γ =
φ0√
ψ0

(see [4]).

By setting ψ̂ = x1, φ̂ = x2, ψ0 = x10 , the system (1) can
be rewritten as

ẋ1 =
1

B

[
x2 − γ

(
sgn(x1 + x10)

√
|x1 + x10 | −

√
x10

)]
ẋ2 = B

(
−k3x32 − k2x22 − k1x2 − x1 − u

)
,

(2)

which is in fact a representation of a nonlinear system in the
form ẋ = a (x) + b (x)u with

a (x)=

[ 1

B

[
x2 − γ

(
sgn(x1 + x10)

√
|x1 + x10 | −

√
x10

)]
B
(
−k3x32 − k2x22 − k1x2 − x1

)
]

b (x)=

[
0
−B

]
.

III. CONTROLLER DESIGN

In this Section we are going to investigate and present
the controller design based on the principle of feedback
linearization. Thereby we will conduct a transformation of
the system (2) into the Byrnes-Isidori-Normalform (B-I-NF)
as well as a full state linearization / state feedback lineariza-
tion. The theory behind this investigation is introduced and
outlined in e.g. [7] and [8].

A. Transformation

It can be seen, that the system (2) is nonlinear in
both differential equations. In order to conduct feedback
linearization, the system will be transformed into the
B-I-NF, which represents the actual nonlinear system of
order n by a chain of n integrators and only one nonlinearity
appearing in the nth derivative of the new state variable
in the transformed coordinates żn. A necessity for this
procedure is to have a relative degree of r = n, meaning that
the input may first appear in the nth derivative of the output
y. In case of r < n, the integrator chain will reduce to r
integrators and the remaining n−r states will be represented
as the internal, non-observable zero dynamics, which must
be stable in order to conduct feedback linearization.

1) Relative Degree: As outlined before, it is easier,
cheaper and more practical to measure the pressure in
compression systems. Therefore, (2) has the defined output

y = h (x) = x1. (3)

With regards to full state feedback control there exist ob-
servers for the system (2), as outlined in Section I. The output
(3) leads to a relative degree of r = n = 2 as can be shown
as follows by calculating the derivative of the output with
respect to time

ẏ = ẋ1,

ÿ = ẍ1 =
1

B
[ẋ2 − γẋ1p1(x1, x10)]

=− k3x32 − k2x22 − k1x2 − x1 − u
− γp1
B2

[
x2 − γ

(
sgn(x1 + x10)

√
|x1 + x10 | −

√
x10

)]
,

(4)

where

p1 = p1(x1, x10) = sgn(x1 + x10)
x1 + x10

2 |x1 + x10 |
3
2

.

As we can see, the input appears in the second derivative
of the output with respect to time, and thus r = n. This
means that the system (2) will not have any zero dynamics
in the B-I-NF.

2) Byrnes-Isidori-Normalform: The state transformation
for a system with relative degree of r = n = 2 is defined as[

z1
z2

]
=

[
h (x)
Lah (x)

]
= T (x), (5)



where Lah (x) is the Lie-derivative of h (x) along a (x)

Lah (x) =
∂h (x)

∂x
a (x) =

[
1 0

] [ẋ1
ẋ2

]
= ẋ1. (6)

By putting (3) and (6) into (5) we obtain[
z1
z2

]
=

[
x1

1

B

[
x2 − γ

(
sgn(x1 + x10)

√
|x1 + x10 | −

√
x10

)]]
(7)

which leads to the following differential equations[
ż1
ż2

]
=

[
ẋ1
ẍ1

]
=

[
z2
ÿ

]
. (8)

Out of (7) we obtain[
x1
x2

]
=

[
z1

p2(z1, z2, x10)

]
=

[
z1
p2

]
, (9)

where we have used the shorthand

p2 = Bz2 + γ
(

sgn(z1 + x10)
√
|z1 + x10 | −

√
x10

)
.

By putting (9) into (4) and afterwards putting the result of
this into (8), we receive

ż1 =z2

ż2 =− k3p32 − k2p22 − k1p2 − z1 − u−
γz2
B
p1(z1, x10),

(10)

which represents the transformation of the original system
(2) in B-I-NF.

B. Full State Linearization

The state feedback linearization is possible, iff the B-I-NF
can be represented in the form

ż = Abiz +Bbiθ (x) [u− σ (x)]

y = Cbiz,
(11)

and furthermore if the pair (Abi, Bbi) is controllable as
well as θ (x) being nonsingular. Therefore we calculate the
functions σ(x) and θ(x) as

θ (x) = LbLah (x) =
∂ (Lah (x))

∂x
b (x)

=

[
− γ
B
p1 (x1, x10)

1

B

] [
0
−B

]
= −1

σ (x) = − L2
ah (x)

LbLah (x)
=
∂ (Lah (x))

∂x
a (x)

=

[
− γ
B
p1 (x1, x10)

1

B

]
a(x)

=− k3x32 − k2x22 − k1x2 − x1
− γp1
B2

[
x2 − γ

(
sgn(x1 + x10)

√
|x1 + x10 | −

√
x10

)]
and see that θ (x) is nonsingular and that σ (x) corresponds
with ẍ1 + u, where ẍ1 is defined in (4).

This leads to the matrices

Abi =

[
0 1
0 0

]
, Bbi =

[
0
1

]
,
[
Bbi AbiBbi

]
=

[
0 1
1 0

]
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Fig. 2. System representation for controller design

where latter is the controllability matrix, which has full rank.
Hence, the original system, respectively the transformed
system, can be represented in the form (11).
In Figure 2 the final scheme for controller design can be seen.
It incorporates the transformation of the nonlinear system (2)
in B-I-NF, as well as the controller consisting of the feedback
linearization and a linear state feedback controller.

C. State Feedback Linearization
So far, we have achieved to transform the original system

(2), which has nonlinearities in both state equations, into
a system that has nonlinearities only in one state equation
(10). Furthermore, we have shown that the system is state
feedback linearizable (11). The feedback linearization is now
performed by finding an expression for the input u, in order
to cancel out the nonlinearities and obtain a new input v.
Linear expressions can be moved into the Abi matrix.

Feedback linearization requires exact model knowledge.
However, parameters of a mathematical model are always
uncertain, and we proceed to account for this uncertainty by
performing a robustness analysis of the closed loop system.

We choose the feedback u

u =− ǩ3p32 − ǩ2p22 − ǩ1p2 −
γz2
B
p1(z1, x10) + v, (12)

where ǩi denote the parameters that are chosen in the
controller. Hence we obtain the following closed loop form

ż1 =z2

ż2 =(ǩ3 − k3)p32 + (ǩ2 − k2)p22 + (ǩ1 − k1)p2 − z1 − v.
(13)

The closed-loop system (13) consists therefore of a linear
part controlled with the state-feedback v and a nonlinear part
in the second state-derivative ż2, which can be interpreted as
a sector nonlinearity feedback f1(p2) as shown in Figure 3.
As can be seen, if the parameter values ki are known exactly,
meaning ǩi ≡ ki, the sector nonlinearity becomes zero and
we obtain a purely linear system.

G(s)
�

⇠ p2(z1, z2, x10
)

f1(p2)

Fig. 3. The principle of a sector nonlinearity feedback

Thus, with the linear feedback

v = K1z1 +K2z2, (14)



(13) can be written as[
ż1
ż2

]
=

[
0 1

−1−K1 −K2

]
︸ ︷︷ ︸

Alin

[
z1
z2

]
+

[
0
1

]
︸︷︷︸
Blin

(−ξ),

y =
[
1 0

]︸ ︷︷ ︸
Clin

[
z1
z2

]
,

(15)

where

ξ = f1(p2) =(k3 − ǩ3)p32 + (k2 − ǩ2)p22 + (k1 − ǩ1)p2.
(16)

Absolute stability of (15) can be ensured by circle criterion
analysis, which states that (16) must be lower and upper
bounded in the sectors I and III in the (p2, f1(p2))-plane.
This can be achieved by requiring k3 − ǩ3 > 0, meaning
that ǩ3 of the controller should be chosen small compared
to k3 of the plant model and, in addition, that (16) should be
nondecreasing, meaning that df1(p2)

dp2
= 0 shouldn’t have any

real solutions. This can be obtained by adding a term ηp2 to
the control law (12) and consequently to (16) yielding

df1(p2)

dp2
=3(k3 − ǩ3)p22 + 2(k2 − ǩ2)p2 + η + (k1 − ǩ1),

resulting in a bound for η

η >
(k2 − ǩ2)2

3(k3 − ǩ3)
− (k1 − ǩ1), (17)

which was obtained by requiring the radicand of the solutions
of df1(p2)

dp2
= 0 to be negative. We can rewrite (17) in terms

of the coefficients H , W , Ȟ and W̌ (see Section II for the
definitions of the parameters ki), and obtain

η >
3

2

(HW̌ 2 − ȞW 2)2

WW̌ (HW̌ 3 − ȞW 3)
.

We can only allow positive values for η as negative values
would imply that the shape of (16) changes. Hence, we must
require HW̌ 3 > ȞW 3 meaning to choose W̌ sufficiently big
and Ȟ sufficiently small, which corresponds with choosing
ǩ3 sufficiently small. Hence, f1(p2) ∈ [α, β], where 0 <
α < β and [α, β] describes a sector created by the two linear
functions αp2 and βp2.

In addition, in order to guarantee absolute stability of (15),
the transfer function

G(s) =Clin(sI −Alin)−1Blin =
1

s2 +K2s+K1 + 1

must be Hurwitz and the transfer function

G̃(s) =
1 + βG(s)

1 + αG(s)
=
s2 +K2s+K1 + β + 1

s2 +K2s+K1 + α+ 1
(18)

has to be strictly positive real.
The transfer function (18) is strictly positive real iff the

following two conditions hold

G̃(∞) > 0, (19)

Re[G̃(jω)] > 0, (20)

where the expression for (20) is given in (24) at the end of
this article. We can directly see that (19) is automatically
fulfilled as G̃(∞) = 1. The second condition (20), however,
is only fulfilled for specific values of α > 0 and β > 0 as
well as K1 > 0 and K2 > 0, which in addition should render
G̃(s) Hurwitz. Thereby the choice of α > 0 and β > 0 is
dictated by the shape of (16) and thus by the choice of Ȟ and
W̌ . It holds that, the bigger the parameter ǩ3 will be chosen,
the bigger η and β and the smaller α have to be chosen.
For β big and α small, the feedback gains K1 > 0 and
K2 > 0 will have to be chosen large in order to compensate
for the poor choice of ǩ3. The solutions of Re[G̃(jω)] = 0
are ωi, i = 1, 2, 3, 4, which should be complex in order for
(18) to be strictly positive real. The expressions for ωi are
given in (25) at the end of this article as well.

Nevertheless, it must be mentioned that by examining
the marginally stable surge dynamics of the system (see
Figure 7), a local stability result is sufficient, which limits
the size of β and thus of the feedback gains K1 and K2

significantly.
The control law hence looks like

u =− ǩ3p32 − ǩ2p22 − (ǩ1 − η)p2 −
γz2
B
p1(z1, x10) + v.

(21)

D. Alternative Formulation

In theory there is an even more robust way to design the
controller, namely by choosing the control signal as

u =ǩ3p
3
2 + ǩ2p

2
2 + (ǩ1 + η)p2 −

γz2
B
p1(z1, x10) + v, (22)

yielding the same structure as in (15), but with

ξ = f2(p2) =(k3 + ǩ3)p32 + (k2 + ǩ2)p22 + (k1 + ǩ1 + η)p2.
(23)

Now we see that there are no restrictions on the choice of ǩ3
as the sum k3 + ǩ3 will always be positive. We can employ
the same procedure as before by adding a term ηp2 to the
control law, leading to the bound on η

η >
3

2

(HW̌ 2 + ȞW 2)2

WW̌ (HW̌ 3 + ȞW 3)
.

Hence, if we choose any feasible values for Ȟ and W̌ , we
can find a sufficiently large constant η such that the sector
nonlinearity (23) is nondecreasing, i.e. f2(p2) ∈ [α, β].
However, this will require very large values for the linear
state feedback gains K1 and K2 in order to fulfill (20) and
make (18) strictly positive real. Thus this approach will not
be applicable in practice. Therefore we concentrate on the
initial formulation of the control law (21) in the simulations.

E. Implementation

The control law (21) can be directly implemented to the
original system (2) by expressing the states z1 and z2 by their
respective formulations in x-coordinates as stated in (7). The
scheme can be seen in Figure 4.
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IV. SIMULATIONS

In this Section we are going to present simulation results
for different cases in order to demonstrate the robust nature
of the controller. As mentioned before, the system is quite
limited in actuation since the CCV can only provide positive
pressure drops. Hence, only positive control signals are avail-
able and in addition, the maximal pressure drop is defined not
to exceed 0.2. This is realized by introducing upper and lower
bounds on the control signal, 0 ≤ u ≤ 0.2. Furthermore, the
maximal rate of change of the control signal is defined to be
±0.5 in order to take actuation dynamics into account. The
simulation parameters are listed in the Appendix, except for
values that will change from simulation to simulation. These
will be listed below the respective Figures.

For the state feedback it is assumed that all states are
measureable. However, as pointed out before, there exist
observers for the estimation of nonmeasurable states, see
e.g. [1] or [2]. Furthermore, we will add white Gaussian
noise to both state derivatives and to the ouput y = x1 in
order to take modeling as well as measurement errors into
account. The white Gaussian noise is incorporated to the
simulations in MATLABr Simulink as band-limited white
noise with a sample time of 0.01, a seed of 0 and noise
powers of 10−6 and 10−7, respectively. State feedback is
rather noise-sensitive and can be minimized using a filter.
An observer can for example be used not just to estimate
the non-measurable state x2, but also to obtain a smoothened
signal for the measurement x1. For all simulations that follow
it holds that the systems starts in the stable region of the
compressor map, namely at φ0 = 0.6, however, at τ = 10
the operating point is changed to φ0 = 0.3, which is in the
surge area. The controller is turned on at τ = 30.

In Figure 5 we are going to present two simulations
investigating two noise powers and their influence on the
overall stabilization. In the top left plot a simulation result
for a noise power of 10−6 is presented, whereas a result for
a noise power of 10−7 is shown in the top right plot. The
respective control signals are shown below each plot and, as
can be seen, for larger noise powers the stabilization of the
system takes longer.
For the following simulations we will choose the noise power
to be 10−7.

Figure 6 shows two simulations for different values of
Ȟ and W̌ , respectively. It can be seen that there is almost
no difference in performance between the results, which
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Fig. 5. Simulation results for ǩ3 = 0.05 (Ȟ = 0.1, W̌ = 1), η = 2,
K1 = 3, K2 = 4, α = 0.1 and β = 30

indicates a small influence of the nonlinear feedback and
thus robustness of the chosen control scheme.
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Fig. 6. Top left simulation: ǩ3 = 0.5 (Ȟ = 1, W̌ = 1) and η = 1; top
right simulation: ǩ3 ≈ 1.1662 (Ȟ = 0.1, W̌ = 0.35) and η = 1; for both
simulations it holds: K1 = 3, K2 = 4, α = 0.1 and β = 30

Figure 7 illustrates a comparison of two simulations with
constrained and unconstrained input signals. These cases are
only shown in order to highlight the theoretical investigations
conducted in Section III. As can be seen, an unconstrained
controller offers higher degrees of freedom with respect to
the choice of the sector [α, β] and thus of the feedback gains
K1 and K2, which in this case are chosen larger than in
the simulations presented in Figures 5 and 6, respectively.
In the top left plot the case with a constrained input signal
is demonstrated, whereas the unconstrained case is shown
in the top right. It can be noticed that for the constrained
case it is not possible to stabilize the system with high
feedback gains in the linear feedback law (14) and thus it
remains in surge. In the unconstrained case the system can
be stabilized, however, the noise gets amplified by the large



feedback gains. The unconstrained case is not implementable
in a real compression system, as such large and in addition
negative pressure drops are not attainable with a CCV.
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Fig. 7. Simulation results for ǩ3 = 0.05 (Ȟ = 0.1, W̌ = 1), η = 2,
K1 = 99, K2 = 20, α = 0.1 and β = 800

V. CONCLUSIONS

In this paper we have shown that the feedback linearization
methodology can be used to stabilize surge in a compression
system. A robustness analysis based upon a sector nonlin-
earity feedback and a circle criterion investigation indicates
that for deviations between the controller parameters ǩi and
those of the plant model ki, the system can be stabilized and
surge can be avoided. Even in the presence of added white
Gaussian noise to the state derivatives ẋ1 and ẋ2 and the
output y as well as imposing restrictions on the magnitude
and slope of the control signal u, the feedback linearizing
controller was able to stabilize the system. However, for large
feedback gains and constrained input signals, the controller
is not able to stabilize the system.

We point out that the parameters B and γ are assumed to
be known exactly, which renders the robustness analysis only
partial as it only holds for uncertainties in the parameters ki.
However, the values for B and γ could be estimated by e.g.
adaptive techniques.

It must be mentioned that in all simulations the control
signal goes back to the origin, or at least to a small
environment around it (due to the added noise). This is due
to the fact that the origin constitutes the equilibrium point.
In a real compression system, however, we will obtain a
stationary value for the control signal, which is constant and
thus 6= 0.

APPENDIX: SIMULATION PARAMETERS

Ac flow area 0.01 m2

B B-Parameter ≈ 0.8319

H coefficient 0.18

Lc length of ducts and compressor 3 m
U compressor blade tip speed 80 m s−1

Vp plenum volume 1.5 m3

W coefficient 0.25

as speed of sound 340 m s−1

ψ0, x10 operating point for ψ, respective x1 0.611, 0.533
φ0, x20 operating point for φ, respective x2 0.6, 0.3
γ throttle gain 0.768, 0.411
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Re[G̃(jω)] =
ω4 + ω2(K2

1 − 2K2 − α− β − 2) +K2
2 +K2(α+ β + 2) + αβ + α+ β + 1

ω4 + ω2(K2
1 − 2K2 − 2α− 2) +K2

2 +K2(2α+ 2) + α(α+ 2) + 1
(24)
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